Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.24.513517

ABSTRACT

A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.13.491770

ABSTRACT

The SARS-CoV-2 BA.1 and BA.2 (Omicron) variants contain more than 30 mutations within the spike protein and evade therapeutic monoclonal antibodies (mAbs). Here, we report a receptor binding domain (RBD) targeting human antibody (002-S21F2) that effectively neutralizes live viral isolates of SARS-CoV-2 variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron (BA.1 and BA.2) with IC50 ranging from 0.02 - 0.05 ug/ml. This near germline antibody 002-S21F2 has unique genetic features that are distinct from any reported SARS-CoV-2 mAbs. Structural studies of the full-length IgG in complex with spike trimers (Omicron and WA.1) reveal that 002-S21F2 recognizes an epitope on the outer face of RBD (class-3 surface), outside the ACE2 binding motif and its unique molecular features enable it to overcome mutations found in the Omicron variants. The discovery and comprehensive structural analysis of 002-S21F2 provide valuable insight for broad and potent neutralization of SARS-CoV-2 Omicron variants BA.1 and BA.2.

4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.01.22270279

ABSTRACT

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of hACE-2 binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using vaccine and delta variant viral strains showed strong correlation with cell-based pseudovirus and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta variant resistance to neutralization in samples with paired vaccine and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.


Subject(s)
Huntington Disease
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.05.238386

ABSTRACT

Viral recombination has the potential to bring about viral genotypes with modified phenotypic characteristics, including transmissibility and virulence. Although the capacity for recombination among Betacoronaviruses is well documented, SARS-CoV-2 has only been circulating in humans for approximately 8 months and thus has had a relatively short window of opportunity for the occurrence of recombination. The ability to detect recombination has further been limited by the relatively low levels of genetic diversity in SARS-CoV-2. Despite this, two studies have reported recombinants among SARS-CoV-2 strains. Here we first revisit these findings with a new analysis approach, arguing that neither presents a clear case of within-SARS-CoV-2 recombination. Applying this same approach to available SARS-CoV-2 sequences, we then identify five recombinant genomes. Each of these genomes contain phylogenetic markers of two distinct SARS-CoV-2 clades. Further, the predicted parent clades of these recombinant genomes were, with one exception, documented to be co-circulating in the country of infection in the two weeks prior to the sample being collected. Our results indicate that recombination among SARS-CoV-2 strains is occurring, but is either not widespread or often remains undetectable given current levels of viral genetic diversity. Efforts to monitor the emergence of new recombinant genomes should therefore be sustained.

6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.03.20084442

ABSTRACT

SARS-CoV-2 is currently causing a devastating pandemic and there is a pressing need to understand the dynamics, specificity, and neutralizing potency of the humoral immune response during acute infection. Herein, we report the dynamics of antibody responses to the receptor-binding domain (RBD) of the spike protein and virus neutralization activity in 44 COVID-19 patients. RBD-specific IgG responses were detectable in all patients 6 days after PCR confirmation. Using a clinical isolate of SARS-CoV-2, neutralizing antibody titers were also detectable in all patients 6 days after PCR confirmation. The magnitude of RBD-specific IgG binding titers correlated strongly with viral neutralization. In a clinical setting, the initial analysis of the dynamics of RBD-specific IgG titers was corroborated in a larger cohort of PCR-confirmed patients (n=231). These findings have important implications for our understanding of protective immunity against SARS-CoV-2, the use of immune plasma as a therapy, and the development of much-needed vaccines.


Subject(s)
COVID-19 , Acute Disease
SELECTION OF CITATIONS
SEARCH DETAIL